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Abstract

A module is serial if it is a direct sum of uniserial modules. In this paper we consider the
following problem: Is every direct summand of a serial module serial? Positive results in several
special cases are obtained. In particular, we show that every direct summand of a finite direct
sum of copies of a uniserial module U is again a direct sum of copies of U. © 1998 Elsevier
Science B.V. All rights reserved.
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1. Introduction

One of the basic problems concerning direct sum decompositions of modules is
the following: Let M = €P,; M; be a direct sum of modules each satisfying a certain
property (P), is then any direct summand of M also a direct sum of modules satisfying
(P)? Perhaps the most well-known theorem of this type is Kaplansky’s Theorem [10],
which asserts that if M is a direct sum of countably generated modules then any
direct summand of M is also a direct sum of countably generated modules. Similar
problems concerning direct summands of direct sums of indecomposable modules occur
in a natural way, and many of them still remain open. In particular, it appears to
be unknown whether the direct summands of a direct sum of modules with local
endomorphism rings are direct sums of modules with local endomorphism rings.

Recall that a module M is called uniserial if its submodules are linearly ordered
by inclusion, and is serial if it is a direct sum of uniserial modules. While there is
a well-developed theory of serial rings, i.e., rings R for which both Rz and zR are
serial, relatively little is known about the behaviour of direct sum decompositions of
serial modules, in general. The uniqueness problem for decompositions of a module
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into a finite number of uniserial summands, posed by Warfield [15], has been settled
recently in a satisfactory way in [5]: Krull-Schmidt fails, but a weak Krull-Schmidt
theorem still holds for a finite direct sum of uniserial modules (see [4] for the infi-
nite direct sum case). The crucial fact observed in [5], that the endomorphism ring
of an arbitrary uniserial module has at most two maximal right ideals, suggests that
there could be some similarities, in a sense, between direct sum decompositions of
serial modules and direct sum decompositions of modules with local endomorphism
rings.

In this paper we consider the following problem: If M is a serial module over an
arbitrary ring R, are direct summands of M also serial? Equivalently, if M is a serial
module over an arbitrary ring R, does any direct sum decomposition of M refine to a
decomposition into uniserial direct summands? Though the problem is natural enough,
it does not seem to have been treated in the literature so far. In this paper we present
positive results in several special cases. In particular, we show that any direct summand
of a finite direct sum of copies of a uniserial module U is also a direct sum of uniserial
modules each isomorphic to U.

Throughout this paper we consider associative rings R with identity, and all modules
are unitary right modules. For each R-module My the Jacobson radical of My will be
denoted by Rad(Mg), and the Jacobson radical of the ring R will be denoted by J(R).
For a module M and an index set I, M) is the direct sum of |I| copies of M.

2. Arbitrary direct sums of uniserials

A module U is small if for any direct sum M = @, , M, with projections m; and
a homomorphism f:U — M we have ;0 f =0 for all but a finite number of indices
A (see [8] or [13]). The module U is called o-small if it is a countable ascending
union of small submodules [13].

Lemma 2.1. Every uniserial module over any ring is o-small.

Proof. By Fuchs—Salce [8, Lemma 24] (cf. [4, Lemma 4.2]), every uncountably gen-
erated uniserial module is small. The result follows immediately. [

As observed by Warfield [13, p. 273], Kaplansky’s proof of [10, Theorem 1] shows
that any direct summand of a direct sum of ¢-small modules is also a direct sum of
o-small modules. This fact and Lemma 2.1 imply that any direct summand of a serial
module is a direct sum of ¢-small modules. Therefore, our problem can be reduced to
the problem of studying direct summands of a direct sum of countably many uniserial
modules.

Following Crawley and Jonsson [3], a module M is said to have the exchange
property if whenever M is a direct summand of a direct sum 4= @iel A;, there
are submodules B; of 4; such that A=M & (P,; B;). It is well known that any
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quasi-injective module has the exchange property [7], in particular, any semisimple
module has the exchange property.

Proposition 2.2. Let M = @, ., U; be a direct sum of uniserial modules with local
endomorphism rings. Then any direct summand of M is also a direct sum of uniserial
modules, each isomorphic to one of the U,.

Proof. By Lemma 2.1 the modules U; are o-small. Since they have local endo-
morphism rings, they have the exchange property [14, Proposition 1]. By Warfield
[13, Theorem 7], if 4 is a direct sum of g-small submodules having the exchange
property, then any two direct sum decompositions of 4 have isomorphic refinements.
In particular, every direct summand of M = P, U; is a direct sum of uniserial mod-
ules each isomorphic to some U;. [

Note that if the base ring R is either commutative or right noetherian, then every
uniserial right R-module has a local endomorphism ring [5, Example 2.3], so that every
direct summand of a serial right R-module is serial by Proposition 2.2.

Let Ug be a module with local endomorphism ring, and suppose that U is a di-
rect summand of M =P® Q. Let ip:M - P, np:M —Q and ny:M — U denote
the canonical projections relative to the decomposition M =P & Q and a decompo-
sition M =U @ C. Then 1y =ny|pnp|ly + ny|omp|y. Since End(Ug) is local, either
ny|pmp|y or nylpngly is an automorphism of Ug. Therefore, U is isomorphic to a di-
rect summand of either P or Q. Now, we prove the key lemma of this paper, which
shows a similar (but somewhat weaker) result for indecomposable modules whose
endomorphism rings have at most two maximal right ideals.

Lemma 2.3. Let R be an arbitrary ring and U an indecomposable right R-module
whose endomorphism ring has at most two maximal right ideals. Suppose that M =
USC=P®P for arbitrary modules M,C and P. Then U is isomorphic to a direct
summand of P.

Proof. Set S =End(Ug). If S is local, the result is proved in the remark above. Suppose
that S has exactly two maximal right ideals K; and K. First we show that K| and
K, are two-sided ideals of S. Note that S is a semilocal ring, so every right unit of S
is a unit of § (see e.g. [11, Proposition 20.8]). Then K; UK, is precisely the set of
non-units of §. Therefore, if K is any proper left ideal of S, we have K C K, UK,.
If there are elements x € K\K; and y € K\K,, then x + y ¢ K; and x+ y ¢ K3, so
x + v ¢ K; UK>, which is a contradiction because x + y € K. Hence, either K C K, or
K C K,. Now for any element x € K, consider the left ideal Sx. If x € K1 N K, =J(S),
obviously Sx CJ(S)C K. If x € K1\K>, then by the observation above either Sx C K;
or Sx C K;. The latter cannot happen because x ¢ K;. Therefore, in any case, Sx C Kj,
i.e. K, is a two-sided ideal, Similarly, K, is a two-sided ideal. Since J(S)=K; N K>,
there is an injective canonical ring homomorphism S/J(S)— S/K, x S/K;. This ring
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homomorphism is onto by the Chinese Remainder Theorem because K; + Ky =E
Thus, S/J(S) is the direct product of two division rings.

Set £ =End(Mp). There is an equivalence add(Mz) — proj-£ of the category add(Mp)
of all the R-modules isomorphic to direct summands of finite direct sums of copies
of My into the category proj-E of all finitely generated projective right £-modules
(the equivalence is given by Ng — Hom(Mg, Ng) for every N € add(Mg)). Note that
M,P,U,C are objects of add(My). If we apply this equivalence to the direct sum de-
composition M = PGP =U & C, we see that Hom(Mg, U) is isomorphic to a direct
summand of Eg. More precisely, let e € E be the idempotent endomorphism of Mg
such that eMy = U. Then Hom(Mg, U)X eE. Tt follows that (see e.g. [16, 22.2])

S/J(S) = End(Ug )/J(End(Ur)) 2 End(eE)/J (End(eE))
= eEe/J(eEe) = End(eE/eJ (E)).

Note that eE is projective, so eE/eJ(E) is a quasi-projective module (see e.g. [16,
18.2]). Since the endomorphism ring of eE/eJ(E) is the direct product of two divi-
sion rings, eE/eJ(E)=L, &L, is the direct sum of two modules L; and L, whose
endomorphism tings are division rings and Hom(L;,L,)=Hom(L,,L;)=0. But the
modules L; (i=1,2) are finitely generated and quasi-projective, so that they are local
modules, i.e., they contain a unique maximal submodule (cf. [9, Corollary 4(2)]). Now,
Rad(L;) =Rad(L,)=0, hence, L, and L, are simple modules. Moreover, Hom(L;,L;)
=0 implies that L; and L, are not isomorphic.

Since M =P & P, the module Ex =End(Mg) is the direct sum of two right ide-
als D{,D, of E both isomorphic to Hom(Mg, Pr). Set D;=D;/D;J(E) for i=1,2, so
that E=E/J(E)=D, &D, and D, = D,. Since E = eE/eJ(E)B (] ~ e)E/(1 — e)J(E),
Ly®L, is a direct summand of D; & D,. By the exchange property of L; @ L,, there
are decompositions Dy =D @ D} and D, =D} ® DY such that E=L, & L, D} & D5.
It follows that L, ®L, =D} @&Dy. If D=0, we have L, ®L,=DY. If Dj=0,
we have Li®L, =D/ In both cases, L; L, is isomorphic to a direct summand
of D, =D,. Suppose that D} and Dy are both non-zero. Since L; and L; arc sim-
ple, by symmetry we can suppose that L, §D’{ and L, ng. But D, = D,, hence L, is
isomorphic to a direct summand 7, of Dy=D D” Since 7, is simple, it has the ex-
change property, so that there is a direct decomposmon D) =C} @ C" such that either
Dy =T, Ch or Dy =T, & C) @ DY. If the first equality holds, we have 7> = CY &
and since 75 and D/ are simple and not isomorphic, we obtain a contradiction. If the
second equality holds, it follows that 7> C/, so that Ly ® L, is isomorphic to the
direct summand D} & C} of D,.

Hence, in any case, eE/eJ(E) is isomorphic to a direct summand of D,/D\J(E).
In particular, e£/eJ(E) is a homomorphic image of D;. Since eE is a projective cover
of eE/eJ(E) and D) is projective, by the uniqueness of projective covers (see e.g.
(1, Lemma 17.17]), eE is isomorphic to a direct summand of D;. In view of the
equivalence above, this proves that U is isomorphic to a direct summand of P. [
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As a consequence, we obtain the following proposition, which is crucial for proving
most of the results in this paper.

Proposition 2.4. Let U be a uniserial module over any ring R. Suppose that U is
isomorphic to a direct summand of P @ P for some R-module P. Then U is isomorphic
to a direct summand of P.

Proof. By [5, Theorem 1.2] the endomorphism ring of any uniserial module U either
is local or has exactly two maximal right ideals / and K, where I ={ f € End(U)| f is
not monic} and K={gcEnd(U)|g is not epic}. Now the resuit follows from
Lemma 2.3. [

Recall that a module M is uniform in case any two non-zero submodules of M have
non-zero intersection. The next lemma is well known, but we include a short proof
for the reader’s convenience. In particular, from the lemma it will follow that every
uniform submodule of a serial module is uniserial.

Lemma 2.5. Let M = @,., M; be a direct sum of uniform modules and m;: M — M;
be the canonical projections. If C is a uniform submodule of M, then there is an
index k €1 such that the restriction my|c: C — My is a monomorphism.

Proof. Consider the family 7" of all the subsets J C I with the property that (,., M)
NC=0. The family T is non-empty and partially ordered by inclusion. By Zorn’s
Lemma, there is a maximal element Jy€ 7. If (C O (D;c;, Mi))NM; =0 for some
k€1, this would imply that CN((D,c,, Mi)®M;)=0, a contradiction to the maxi-
mality of Jy. Hence, (C®(®i€.lo M) M #0 for all kel. Since M, is uniform for
all ke€/, the module C @ (P, 5, M) is essential in M. From this we deduce easily
that Jy =I\{k} for some index k €. Then the restriction 7|c : C — M, of the natural
projection m; must be a monomorphism. []

We are now interested in the following question, which is a weakened form of the
initial problem: If M = @ie ; U; is a direct sum of uniserial modules, does every non-
zero direct summand of M contain a non-zero uniserial direct summand? Qur next
result sheds some light on this question in the special case in which all the U; are
isomorphic to each other.

Proposition 2.6. Let U be a uniserial module and I be an arbitrary non-empty index
set. Suppose that U =A@ B. Then either A or B must contain a direct summand
isomorphic to U.

Proof. The statement is trivial if 4 or B are zero, so that we may assume 4 # 0 and
B#0. Writt M= @,,; Ui, where U;=U for all icl. Let m;:M — U, mg:M — A4
and 7z:M — B denote the natural projections corresponding to the decompositions
M= @, Ui and M =A@ B. Fix an index i € /. We have 1y, = m;|474|y, +m[a7a|y,, S0
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that either 7;| 474|y, or 7:|37a|y, is an epimorphism by [5, Lemma 1.4(b)). By symmetry
we may suppose that m;|47m4|y, is an epimorphism. If ;|4 74|y, is an automorphism
of U;, then A4 contains a direct summand isomorphic to U; 2 U, and we are done.
Hence, we may suppose that m;|474|y, is not a monomorphism.

We claim that there is an index j€/ such that the restriction 74|y :U;j—4 is
a monomorphism. This is equivalent to claiming that there is an index ;€[ such
that U;NB=0. Suppose that such a j does not exist, i.e. UyNB#0 for all jel.
Then it would follow that B is essential in M, hence B=M and 4=0, a contra-
diction. This proves the claim. Note that C =n,(U;) is uniform (in fact uniserial),
hence by Lemma 2.5 there is an index k €1 such that the restriction nz|c: C— Uy is
a monomorphism. Since U; = U; = U, = U, there are two homomorphisms f: U; — 4
and g:4 — U; such that the composite map ¢ f i1s a monomorphism. If g f is an iso-
morphism, 4 contains a direct summand isomorphic to U, and we are done. Therefore,
we may assume that g/ is not an epimorphism.

Since U; is a uniserial module, the mapping ;| 474y, +¢f is an automorphism of U;
[5, Lemma 1.4(a)]. Hence, the composite mapping of

(mygly, ) Ui—ABA and (n;'A);A@A_,Ui

is an automorphism of U, so that U; is isomorphic to a direct summand of 4 ® 4. By
Corollary 2.4, this implies that 4 contains a direct summand isomorphic to U;. [

When the index set / is finite, Proposition 2.6 yields the answer to our question.

Theorem 2.7. Let U be a uniserial module over an arbitrary ring and n be a natural
number. Then any direct summand of U" is isomorphic to U™ for some m<n.

Proof. The proof proceeds by induction on n. If n=1, the result holds trivially. Sup-
pose that the result holds for all £ <n, and let U" = A4 @ B, where A and B are non-zero
direct summands of UU”. By Proposition 2.6, either 4 or B must contain a direct sum-
mand isomorphic to U, say 4= U & A’. By the cancellation property of uniserial mod-
ules [5, Corollary 1.3], we get U""' =4’ @ B. By the inductive hypothesis, 4’ = U"
and B U™ for suitable ,m<n— 1. Then AU+, O

Corollary 2.8. Let R be an arbitrary ring, Ug a uniserial module and E =End(Uy) its
endomorphism ring. Then every finitely generated projective right E-module is free.

Proof. The corollary follows immediately from Theorem 2.7 and the equivalence
between the category add(Mpy) of all the R-modules isomorphic to direct summands
of finite direct sums of copies of Mg and the category proj-E of all finitely generated
projective right E-modules. [J

In view of Corollary 2.8, it would be interesting to know whether all projective
(right) modules over the endomorphism ring of a uniserial module Uz must be free.
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Also, we do not know whether in Proposition 2.6, both 4 and B must contain a direct
summand isomorphic to U.

Following Bass [2], a right R-module M is called uniformly R-big, where N is
an infinite cardinal number, provided M can be generated by N elements and M/MI
requires N generators for all proper two-sided ideals I of R.

Proposition 2.9. Let U be a uniserial right R-module and A a direct summand of
a direct sum of copies of U. Then A=A ® A,, where A, is a direct sum of copies
of U and A, has no maximal submodules.

Proof. Suppose that U is not cyclic, and UY) =A@ B, where I is an index set.
Since U is uniserial and not cyclic, we have U =Rad(U), hence UY) =Rad(U")) =
Rad(4) ®Rad(B) (see e.g. [1, Proposition 9.19]). It follows that 4 ® B =Rad(4) &
Rad(B), hence 4 =Rad(A4), i.e. A does not contain maximal submodules.

Hence, from now on, we may assume that U is a cyclic uniserial module. Set
E =End(Ug). There is an equivalence H : Add(Ug) — Proj-E of the category Add(Ug)
of all the R-modules isomorphic to direct summands of direct sums of copies of Uy into
the category Proj-E of all projective right E-modules (the equivalence is given by Ng —
Hom(Upg,Ng) for every N € Add(Ug); see [1, Lemma 29.4]). Since H(A) € Proj-E,
H(A) is a direct sum of countably generated projective right E-modules by Kaplansky’s
theorem [10]. Therefore, without loss of generality, we may suppose that 4 is a direct
summand of U®¢), If 4 is finitely generated, then A4 is a direct summand of U”" for
some integer 1> 1, so A= U™ for some m > 1 by Theorem 2.7. Therefore, we assume
that P=H(A4) is a countably generated projective right E-module that is not finitely
generated. By [5, Theorem 1.2] the ring £ has at most two maximal right ideals. If E
is a local ring, the result follows by Proposition 2.2. Hence, we may assume that E has
exactly two maximal right ideals / and K, where I ={ f € End(U)| f is not monic}
and K={g€End(U)|g is not epic}. Denote by J the Jacobson radical of £, and
consider the vector space P/PI over E/I and the vector space P/PK over E/K. If both
of them are infinite-dimensional vector spaces, then for every two-sided ideal L of R,
L is contained either in / or in K, so that P/PL is not finitely generated. Hence, P
is uniformly W,-big as a right E-module, which implies by Bass [2, Theorem 3.1]
(cf. also Rowen [12, Theorem 5.1.67]) that P is a free E-module. In this case 4 is
a direct sum of copies of U, and we are done.

Therefore, it suffices to consider the case in which one of the two dimensions
m =dimg;(P/PI) and ny =dimgx(P/PK) is finite. Set n= min{n;,n;}. On the one
hand, we have

P/PJ = P/P] & P/PK = (E/[)" & (E/K)™.

On the other hand, E"/E"J = (E/I)" ® (E/K)", so there is an epimorphism f:P/PJ —
E”/E"J, which implies that E”/E"J is an epimorphic image of P. But n is finite, so
E™" is a projective cover of E"/E"J. Hence, by the uniqueness of projective covers
(e.g. [1, Lemma 17.17]), E" is isomorphic to a direct summand of P, so P E" S Q
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for some direct summand Q of P. Thus, 4 has a decomposition 4 =4 ® 4,, where
A1 =2 U" and H(4;)= Q. Since n= min{n;,n,}, it follows that either dimz; Q/QOI =0
or dimgx O/OK =0, i.e. either 0 =0l or 0=0K.

Suppose that O = OK. Since 0 = Hom(Ug, A3), for every homomorphism f: U — 4,
there is a finite number of homomorphisms fi,..., f,: U — 4, and ¢g;,...,9, €K such
that /=37, figi. Every g;:U — U is not surjective, so that g;(U)C Rad(U). Then
fi9:(U) C fi(Rad(U)) C Rad(4;), which implies that f(U)C Rad(4,). But A4, is a di-
rect summand of U™, hence U generates 42, 50 42 =3 rcyomu.an J(U) € Rad(4).
Therefore, A, =Rad(4;), so that 4, has no maximal submodules.

Finally, suppose that Q = QI. Then for every homomorphism f:U — A, there is
a finite number of homomorphisms f|,..., f,: U — 47 and ¢,,....g, €I such that f=
Z?:l f:gi- Since every g; €1, that is, g;: U — U is not injective, and U is uniserial,
it follows that f is not injective. Let m: U™ — 4, be the splitting canonical pro-
jection and ¢; : U; — U be the canonical injections. Then @ieNO ker(me; ) C ker(m),
and each ker(ne;) is non-zero, which implies that ker(r) is essential in U®. But
ker(n)NA; =0, therefore 4, =0, and so 4A=4,=2U". [

Note that if M :@iel M; is a direct sum of modules M; with local endomorphism
rings, then by Azumaya’s theorem (e.g. [1, Theorem 12.6]) every non-zero direct
summand of M contains an indecomposable direct summand isomorphic to some M;.
In view of this fact, our next corollary may be considered as a partial generalization
of Proposition 2.2 (in the case U; = U; for all i,j€T). It is interesting to remark that
the two proofs are quite different.

Corollary 2.10. Let U be a cyclic uniserial module and [ an arbitrary index set.
Suppose that every non-zero direct summand of UY) contains a direct summand
isomorphic to U. Then every direct summand of U is a direct sum of copies of U.

Proof. Let 4 be a direct summand of U"). By Proposition 2.9 we have 4 =4, $ 4>,
where A is a direct sum of copies of U, and 4; has no maximal submodules. Then
every direct summand of 4, has no maximal submodules. If 4, # 0, by hypothesis 4,
contains a direct summand isomorphic to U. Since U is cyclic, U contains a maximal
submodule. Thus, we get a contradiction, which shows that 4, =0. Hence, 4 =4, is
a direct sum of copies of U. [

We conclude this section with a remark about the so-called “Nth root uniqueness”
for uniserial modules. It was shown in [6] that modules with semilocal endomorphism
rings satisfy the nth root uniqueness property, i.e. if M and N are modules with
End(M) and End(N) semilocal and » is a positive integer, then M”" = N" implies
M =N. 1t is natural to ask if a similar “Nth root uniqueness” holds for modules with
semilocal endomorphism rings, where N is an arbitrary cardinal number. Lawrence
Levy has recently communicated to us an example (unpublished) showing that there
exist indecomposable modules M and N with End(M ) and End(N ) semilocal such that
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M®) = N®) byt M is not isomorphic to N. However if one of M or N is cyclic
uniserial, we do have “Xth root uniqueness” for an arbitrary cardinal number R # 0.

Proposition 2.11. Let U be a cyclic uniserial module and N an indecomposable
module, and suppose that U = N® for some cardinal number X # 0. Then U= N.

Proof. Since U is cyclic and U™ = N®) U is isomorphic to a direct summand of
a finite direct sum N" of copies of N. Let m be an integer with n <2™, so that U is
isomorphic to a direct summand of N2". Now apply Proposition 2.4 m times. It follows
that U=N. O

3. Finite direct sums of uniserials

In this section we concentrate on finite direct sums of uniserial modules.

Proposition 3.1. Let U,,...,U, be uniserial modules, and suppose that M =U, @ - -
U, =ZP®P for some module P. Then P is serial.

Proof. Induction on n>0. The cases n <2 are trivial (for n=2 recall that every
uniform submodule of the serial module M is uniserial by Lemma 2.5).

Suppose that M =U,®-- - ®dU,=Z P& P with n>3. By Proposition 2.4 the uni-
serial module U; is isomorphic to a direct summand of P, P=U; @ P say. Then
U --adU,2U10U &P @GP, so that U ®--- U, 2U, &P &P by cancella-
tion {5, Corollary 1.3]. By [5, Proposition 1.5] there are two distinct indices
i,j=2,3,...,n such that U; is isomorphic to a direct summand of U; & U;. For sim-
plicity of notation suppose i=2 and j=3, so that U, @ U= U, HW for a suit-
able uniserial module W. Then Uy W e U, & - - d U, 2 U, ®P' & P implies that
WolUy,®- - -@&U, =P ®P'. By the inductive hypothesis P/, hence P also, are serial
modules. O

We observe a technical lemma.

Lemma 3.2. Let M be a module with two decompositions M =U; @ ---®dU,=A®B,
where U,,...,U, are uniserial modules and A#0. Let n;:M — U;, i=1,...,n, and
n4:M — A denote the canonical projections corresponding to these decompositions.
Then there are two indices k,t =1,...,n such that the composite map m,| 74|y, : Uy —
A — U, is an epimorphism.

Proof. Clearly AQ@?:] n;(4). Suppose mi(4)# U; for all i=1,...,n. Then m(4)
is superfluous in U,, hence superfluous in M. It follows that @, n(4) is super-
fluous in M, so A4 also is superfluous in M. But this is a contradiction because
M =A@ B. This shows that there is an index ¢t=1,...,n such that n,(4)=U,, ie.
U =n)a(A)=3_ m|ana(U;). But U, is uniserial, so there is an index k=1...., n
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such that U, = n,|4m4(Uy). This shows that the composite map of 74|y, : Uy — 4 and
7|44 — U, is an epimorphism. [

Following [5], two modules 4 and B are said to belong to the same monogeny class,
written [4]m = [Blm, if there are a monomorphism f:4— B and a monomorphism
g:B—A. Similarly, 4 and B are in the same epigeny class, written [A]e=[B]., if
there are an epimorphism 4:4 — B and an epimorphism #:B — 4.

Theorem 3.3. Let U,,..., U, be uniserial modules. Suppose that for any pair U; and
U; there exists a uniserial module W such that [Ujln =Wy and [Ujle =[W]e. Then
any direct summand of U, & ---® U, is serial.

Proof. Assumethat M=U,®---® U, =4 ® B with 4 and B non-zero. Let n; : M — U,,
n4:M — A and ng: M — B denote the canonical projections corresponding to the de-
compositions M = @?:1 U; and M = A & B, respectively.

We claim that either 4 or B has a non-zero uniserial direct summand. In order
to prove the claim note that 1y, =m |474ly, + 71|s78|0,. Hence, either m| m4)y, or
n1|7g|y, is injective [5, Lemma 1.4(b)]. By symmetry we may suppose, without loss
of generality, that 71 |474|y, i$ injective. Now, we prove that there is an index k and ho-
momorphisms o : U, — 4 and B : 4 — U, such that the composite map fa is a surjective
endomorphism of U;. By Lemma 3.2 there are Uy and U, such that the composite map
Telamaly, : Ur — A — Uy is an epimorphism. By hypothesis there is a uniserial module
V such that [U]y =[V]n and [Ui]e =[V]e. This implies that there are a monomor-
phism f:¥ — U, and an epimorphism g: ¥ — Uy. Then h=m|4n4ly,g:V — U, is an
epimorphism. Since ¥ and U, are uniserial, it follows from [5, Lemma 1.4(a)] that ei-
ther f or h or f+h is an isomorphism. In all the three cases we get that V"= U, hence
[Urle =[Ui]e. Let ¢:U, — Ui be an epimorphism. Then the maps a=m,|y, : Uy — 4
and f=¢mn]4:A4— Uy have the property that the composite map fa is a surjective
endomorphism of Uy.

By hypothesis there is a uniserial module W such that [U]n =[Wln and [Ukle
=[W1.. Since m |44y, : Uy = A — Ui is injective and fa: Uy — 4 — Uy is surjective,
there are maps fi,g; € Hom(W,4) and f,, g, € Hom(4, W) such that the composite map
f2/1 is injective and the composite map g»g; 1s surjective. If f; f; is an automorphism
of W, then 4 has a direct summand isomorphic to #, and we are done. Similarly,
if g»g: is an automorphism of W, again 4 has a direct summand isomorphic to W.
If neither f3fi nor ¢i¢; are automorphisms, then f;fi + g»¢1 is an automorphism
of W [5, Lemma 1.4(a)], hence, W is isomorphic to a direct summand of 4@ 4.
By Proposition 2.4 it follows that W is isomorphic to a direct summand of 4. This
proves our claim.

Now the proof of the theorem is by induction on n. The case n=0 is trivial.
fM=U® - -®U,=AODB, either A or B has a non-zero uniserial direct summand
by the claim. By symmetry, we may assume that 4 = U & 4’, where U is non-zero uni-
serial. If U is isomorphic to some U;, say U = U, then by the cancellation property
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of uniserial modules [5, Corollary 1.3] we get U, ®--- & U, 24’ @ B, which implies
by the inductive hypothesis that 4’ and B, and hence 4 and B, are serial. Now, sup-
pose that U is not isomorphic to any of the U;, i=1,...,n. By [5, Proposition 1.5],
there are distinct indices, say 1 and 2 for simplicity, such that Uy U, 2 U G U’
for some submodule U’. Clearly U’ is not isomorphic to either U; or U,, and so
by [5, Proposition 1.7] we have, without loss of generality, that [U’], =[U)]. and
[(U']e =[U2])e. Since

Uelho -oU,2UalU ol:;0 alU,2Usd @B,
by the cancellation property we obtain
UoUsd---aU, >4 &B.

Using the fact that [U'], =[Uln and {U']. =[Us]e, it is easy to check that the se-
rial module U’ @ U; & --- @ U, also satisfies the hypotheses of the theorem. By the
inductive hypothesis, this implies that 4’ and B, and hence 4 and B, are serial, which
completes the induction. [J

From Theorem 3.3 we obtain the following corollary, which is a generalization of
Theorem 2.7.

Corollary 3.4. Let Uy, U,,..., U, be uniserial modules. Suppose that either

(@) [Uiln =1U;lm for each pair U; and Uj;, or

(b) [Uile =1Uj]e for each pair U; and U,

Then any direct summand of Uy @ ---® U, is a direct sum of uniserial modules
each isomorphic to some U,.

Proof. For each pair U; and U}, if [Ui]n = [Uj]lm, then setting W = U, we get [Uln =
[#]w and [Uj]e = [W].. Similarly, if [U;]. = [Uj]e, then setting W = U;, we get [U;]m =
[W]n and [U]e =[W].. From Theorem 3.3 it follows that any direct summand of
M=U®-.-@U, is serial. Now, if U is any uniserial direct summand of M, by
[5, Proposition 1.7] either U is isomorphic to some U;, or there are indices i # j such
that [U]n =[Uilm and [U]. = [Uj]e. If the hypothesis (a) holds, we have [Ulyn = [Ui]m
=[U;lm, hence U = U; by [5, Proposition 1.6]. Similarly, if the hypothesis (b) holds,
we get U=U;.. O

Let Ui,...,U, be uniserial modules. Note that, on the one hand, if one of the
hypotheses (a) and (b) of Corollary 3.4 is satisfied, then the Krull-Schmidt Theorem
holds for the module U; @ - -+ @ U,. On the other hand, if U; @ U; does not satisfy the
Krull-Schmidt Theorem for each pair i and j, that is, U; & U; =V; @ W;; with V; and
W;; not isomorphic to U; and U;, then the hypotheses of Theorem 3.3 are satisfied (cf.
[5, Proposition 1.7]). This motivates our next result which narrows down the class of
possible counterexamples.
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Define a uniserial module U to be mono-Krull-Schmidt if for every module V,
[Ulm =[V]y implies U = V. Similarly, define a uniserial module U to be epi-Krull-
Schmidt if for every module V, [U]. =[V]. implies U = V. Thus, a uniserial module
U is Krull-Schmidt [5, Definition 1.10] if and only if it is either mono-Krull-Schmidt
or epi-Krull-Schmidt.

Proposition 3.5. Let U, U,,...,U, be mono-Krull-Schmidt uniserial modules. Sup-
pose that [Ule # [Ujle for every i,j=1,2,....n, i#j. Then every direct summand
of U1 Uy & ... DU, is serial.

Proof. Without loss of generality, we may suppose U; #0 for every i=1,2,...,n.

The proof will be by induction on n. The case n=1 is trivial. Suppose M = U, & U,
G®- U, =POQ. Let ;y: M - U, ip:M =P, g M —Q, &:U—M, ep: P> M,
gp:Q— M denote the canonical projections and embeddings corresponding to these
direct sum decompositions of M.

Assume first that both P and Q have no non-zero uniserial direct summand. We claim
that, under this hypothesis, for every i =1,2,...,n there exists an epimorphism U; — U;
for some index j=1,2,...,n, j#i.

In order to prove the claim, fix i=1,2,...,n. Say i=1 for simplicity of notation.
Then 1y, = mer = mlye1 = mi(epmp + egnp e = Miepmpe) + megmper. If one of these
two summands is an automorphism of Uy, say mep7pé; is an automorphism of Uj, then
U, is isomorphic to a direct summand of P, a contradiction. Hence, neither m1epmpe;
nor migpnpe is an automorphism of Uj. Then one of mepmpe;, mgpmpe; is injec-
tive and not surjective, and the other is surjective and not injective [5, Lemma 1.4(b)].
By symmetry, we may suppose, without loss of generality, that m epmpe; is injective
and not surjective, and mepmge; is surjective and not injective. Consider the idempo-
tent endomorphism epnp of M =U; & --- P U,,. If we write it in matrix form,

a1 A1z A1n

A2 A2z . Oon
EpTlp = . . . )

Op1 UAn2 e Unn

where o;: U; — U;, then miepmpe; =a. Since epmp is idempotent, it follows that
arr =Y 0. Hence oy (1 —apy) =31, a1;041. As oy = myepmpe is injective and
not surjective, 1 — o) is surjective. Hence imay; =im(a; (1 — oq1))=im(} [,
a;01) S D ,(imay;). Since U; is uniserial, it follows that there exists j#1 such
that ima;; € ima,;. Therefore, the monomorphism oy : U; — U; induces a monomor-
phism U; —imay; (it is sufficient to restrict the codomain to ima;;); and the em-
bedding ima;; — U; is obviously a monomorphism. Thus [im a);]n =[U)]m. But Uj
is a mono-Krull-Schmidt uniserial module, so that ima;; = U;. Since a;;: U; — U, in-
duces a surjective mapping U; — im ay, it follows that there exists a surjective mapping
U; — U;. This concludes the proof of the claim.
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By the claim, if we start from i, =1, we can construct an infinite sequence of
epimorphisms

""”’Uiz_>Ui1—_>l]i0

with i, #i,,, for every £ >0. Since the set {1,2,...,n} is finite, there exist two indices
t<u such that U;, = U;,. Hence, there is a sequence of epimorphisms

U, —

. e U
u u— 1

iryi

- Uiz = Ui,,-

It follows that [U;, . =[U;,_,Jc = - - =[U;,,]c =[U, Ic. In particular, [U;,,]. =[U,]. and
i;11# ;. This is a contradiction. The contradiction shows that either P or Q must always
have a non-zero uniserial direct summand.

Suppose, for example, that P has a non-zero uniserial direct summand, say P =
V@ P'. Then V is a direct summand of Uy & --- @ U, so that V= U; for some i by
[5, Proposition 1.7]. Since cancellation holds, P’ & Q is isomorphic to the direct sum
of all the modules U; with i+ j. By the inductive hypothesis both P’ and Q are serial
modules. Therefore, P is serial as well. O

Proposition 3.6. Let Uy, Uy,..., U, be epi-Krull-Schmidt uniserial modules. Suppose
that [Uilm # [Ujlm for every i,j=1,2,...,n, i # j. Then every direct summand of U &
U&--- & U, is serial.

Proof. Dual to the previous one. [
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